

INSTALLATION AND USER INSTRUCTIONS

GLT CONTROLLER TYPE "EMR813"

April 2022 Version 1.0.0

DISCLAIMER

Copyright © 2022 by Embedos Engineering LLP

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher. For permission requests, write to the publisher, addressed "Attention: Permissions Coordinator," at the address below.

Embedos Engineering LLP

Mumbai

info@embedos.io

www.embedos.io

Document Revisions

Date	Version Number	Document Changes
13-04-2022	01.0.0	Initial draft

Table of Contents

Table of Contents	4
PREFACE	5
.1. Purpose of Document	5
Factory Set Configuration	6
Connections	6
Connection Diagram	7
Modbus Register Addresses	8
Operation	10
Web UI Interface	12
	Table of Contents PREFACE

1. PREFACE

1.1. Purpose of Document

The EDGE as a GLT controller provides an internal Modbus Server to read the analog and Digital inputs and control digital outputs.

In this application it used to monitor and control a Glove Leak Testing application by controlling a pneumatic pump and monitoring the pressure drop in an inflated glove. The complete system is battery operated and housed in a nylon enclosure for portability. For this reason, all communication is handled by the on-board Wi-Fi module of the EDGE.

EDGE calibration, test and network configuration options have been added to the latest iteration of this application of the EDGE.

2. Factory Set Configuration

- Analog Current Input (4-20mA) on Analog Input channel 1 of device.
- Digital Pulse Input (24V) on Digital Input channel 1, 2 and 3 of device.
- Sinking output up to 24V on Digital Output channel 1, 2, 3, 4, 5 and 6 of device.
- Modbus TCP Slave running on port 11502
- CAN interface set to 125000bps for CAN RFID reader with node-id 32 (IFM default)
- Hotspot SSID: EM- "mac-id of device" (Defined on side of the device enclosure)
- Hotspot Password: edge@12345
- Always available IP over Hotspot 192.168.4.1
- Web Page URL (over hotspot) http://192.168.4.1
- Web Page URL (over Wi-Fi) http://"ip_address_assign_to_device"
- Web Page Credentials User admin, Password admin

3. Connections

- Digital Input 1 Process Start Input
- Digital Input 2 Pressure Switch Input
- Digital Input 3 Emergency Stop Input
- Digital Output 1 Process Indicator Output
- Digital Output 2 Gasket Solenoid Valve Output
- Digital Output 3 Deflator Output
- Digital Output 4 Glove Solenoid Valve Output
- Digital Output 5 Alarm Buzzer Output
- Digital Output 6 Pump Output

4. Connection Diagram

5. Modbus Register Addresses

Address	Function	Persistence
40001	Pressure Sensor value on Analog Input 1	No
40003	Analog Input Setpoint	No
40005	Gasket Inflation Time in seconds	Yes
40006	Glove Inflation Time in seconds	Yes
40007	Stabilization Time in seconds	Yes
40008	Process Time in seconds	Yes
40009	Data read bit toggling interval in seconds	Yes
40010.0	Digital Input 1 (Process Start Input)	
40010.1	Digital Input 2 (Pressure Switch Input)	
40010.2	Digital Input 3 (Emergency Stop Input)	
40010.3	Digital Input 4	
40010.4	Digital Input 5	
40010.5	Digital Input 6	
40010.6	Digital Input 7	
40010.7	Digital Input 8	
40010.8	Digital Output 1 (Process Indicator Output)	
40010.9	Digital Output 2 (Gasket Solenoid Valve Output)	
40010.10	Digital Output 3 (Deflator Output)	
40010.11	Digital Output 4 (Glove Solenoid Valve Output)	
40010.12	Digital Output 5 (Alarm Buzzer Output)	
40010.13	Digital Output 6 (Pump Output)	
40010.14	Digital Output 7	
40011.0	Process failed in Gasket Inflation Alarm	
40011.1	Process failed in Glove Inflation Alarm	
40011.2	Process Passed (1) / Process Failed (0)	
40011.3	Process On (1) / Process OFF (0)	
40011.5	Toggling Bit (For Data logging)	
40011.6	RFID Tag Detect bit	
40011.8	Emergency Button pressed Alarm	
40011.9	Asserted on first analog value lock in process time,	
	cleared on final value lock	
40011.10	Asserted on start of stabilization time, cleared at the	
	end of time	
40011.11	Asserted when process failed in stabilization time	
40012.1	Assert to clear all alarms	

40012.3	Assert to Reset Batch Count		
40013	Maximum allowable difference in logged values	Yes	
40014	First latched analog value in process time		
40015	Last latched analog value in process time		
40016	Data to write to RFID Tag (MSB)		
40017	Data to write to RFID Tag (LSB)		
40018	Data read from RFID Tag (MSB)		
40019	Data read from RFID Tag (LSB)		
40020	Assert to write data to RFID Tag		
40024	Batch Count – Number of batches created	Yes	
40025	Progressive Count – Number of times process started		
	in Batch		
40026	Minimum Pressure to continue with process. Pressure	Yes	
	should not drop below this value during stabilization		
	time		
40027	Batch Status. Assert to start a Batch. Clear to stop the		
	batch		
40028	Assert to enable maintenance mode. Clear to disable		
	the mode		
40029.0	Maintenance Mode Control Digital Output 1		
40029.1	Maintenance Mode Control Digital Output 2		
40029.2	Maintenance Mode Control Digital Output 3		
40029.3	Maintenance Mode Control Digital Output 4		
40029.4	Maintenance Mode Control Digital Output 5		
40029.5	Maintenance Mode Control Digital Output 6		
40029.6	Maintenance Mode Control Digital Output 7		
40030	Minimum pressure below which pump output is turned	Yes	
	ON during purging time. Pump output stays ON while		
	pressure is less than purging pressure threshold		
40031	Purging Time in seconds	Yes	

6. Operation

There is total 8 states [stages] of Operation:

- 1) Idle state
- 2) Process ON state
- 3) Gasket Inflation state
- 4) Glove Inflation state
- 5) Purging state
- 6) Stabilization state
- 7) Measurement/Process state

By default, the device is in Idle State.

- 1. To make the device in Process ON state following points need to be satisfied -
 - 1.1.No. alarm should be present, if yes disable all the alarms by asserting on bit 1 of register 40012.
 - 1.2. RFID tag should be detected by RFID header indication of the same can be verified on bit 6 of register 40011.
 - 1.3. Batch Status on register 40027 should be 1. If not write 1 to the same.
 - 1.4. Provide pulse Input on Digital Input 1.

When above all conditions are satisfied the device will go into process on mode and indicating Digital Output 1 – ON.

- 2. As soon as Digital Output 1 is ON, device will go into Gasket Inflation state indicating Digital Output 2 & 6 ON.
- 3. At this point, the device can go into two states, either Glove Inflation state or Alarm state. If pressure switch input is provided on Digital Input 2 within Gasket Inflation time (defined in register 40005), device will go into Glove Inflation state, else it will go into Alarm state, indicating Digital Output 5 ON & the process stops.
- 4. Once the input is provided on Digital Input 2 within Gasket Inflation time, device will go into Glove Inflation state, indicating Digital Output 4 ON & Digital Output 2 OFF.
- 5. At this point, the device can go into two states, either Purging state or Alarm state. If the analog current input (pressure input) provided on analog input channel 1 of device increases above analog input setpoint (defined in register 40003) within Glove Inflation time (defined in register 40006), device will go into Purging state,

else it will go into Alarm state, indicating Digital Output 5 - ON & the process stops.

- 6. Once the pressure input crosses analog input setpoint, the device goes into Purging state and remains in this state till purge time (defined in register 40031).
- 7. In this state, Digital Output 4 and 6 will be OFF. If the pressure input decreases below the analog input setpoint, Digital Output 4 and 6 will turn ON and if the pressure input increases above analog input setpoint, Digital Output 4 and 6 will turn OFF.
- 8. Once the purging time is completed, the device will go into Stabilization state. In this state, only Digital Output 1 will remain ON. At this point, device can go into two states, either Measurement/Process state or Alarm state. If the pressure input decreases below Stabilization threshold (defined in register 40026) within stabilization time (defined in register 40007), device will go into Alarm state, indicating Digital Output 5 ON & the process stops. Else, device will remain in stabilization state for stabilization time.
- 9. Once the stabilization time is completed, device will go into Measurement/Process state and remains in this state for process time (defined in register 40008). While the device is in this state, it captures two pressure input values for the difference calculation (i.e., one at the start of this state & one at the end of this state). If the difference is greater than maximum allowable difference (defined in register 40013), the process will fail, else, the process will pass & the device goes into Idle State.

Alarms generated by device -

- 40011.0 Alarm 1
- 40011.1 Alarm 2
- 40011.8 Emergency Alarm
- 40011.11 Process failed in stabilization state
- 1. Alarm 1 will be triggered in Gasket Inflation state. (Refer point 3 of operation)
- 2. Alarm 2 will be triggered in Glove Inflation state. (Refer point 5 of operation)
- 3. If the device is in any of these states from 2 to 7 (refer stages) & Digital Input is provided on Digital Input 3, Emergency Alarm is Triggered.
- 4. Process Fail Alarm will be triggered in Stabilization state. (Refer point 8 of operation)

To disable Alarms, assert on register 40012.1. Alarms will be disabled indicating Digital Output 5 – OFF.

7. Web UI Interface

To access the web UI of the device, connect the hotspot generated by the device and enter the URL - <u>http://192.168.4.1</u> on the browser.

Enter Username	
Enter Password	
Login	

Enter the login credentials to access the web UI. Once logged in, settings page will appear.

Settings Page Maintenance Page	Power Down
SET / UPDATE WIFI	Update Firmware
Static Dynamic	Firmware Version: 0.1.3
Enter Password:	IP Adresses: 192.168.0.230
Submit	
© Embedos	Engineering

User can scan Wi-Fi networks and connect to the network statically or dynamically.

	Settings Page	Maintenance Page	Power Down
		SET / UPDATE WIFI 67E382-E470series 67E382-E470series EMBEDOS_24G ACDM DIRECT-PHKAUSTUBH-HPmsH9 TP-LINK Submit	Scan Wit Update Firmware Firmware Version: 0.1.3 IP Adresses: 192.168.0.230
© Embedos Engineering			

To connect the network statically, user needs to provide IP address, Subnet mask and Gateway along with the password.

Settings Page	Maintenance Page	Power Down
	SET / UPDATE WIFI EMBEDOS_2.4G	In Wifi
	Static Dynamic	Firmware Version: 0.1.3
	Enter Password:	IP Adresses: 192.168.0.230
	•••••	
	Enter Static IP:	
	152.100.0.230	
	255.255.255.0	
	Gateway:	
	192.168.0.1	
	Submit	
		© Embedos Engineering

To access maintenance mode, click on Maintenance page.

Embedos Settings Page Maintenance Page	Power Down
Maintenance Mode OFF ON	
Calibrate Enter Lower bond value 0 © Enter Higher bond value 20000 ©	
submit	DIGITAL OUTPUT STATUS
Control Digital Output	
	3
© Embedos Engineering	

- 1) User can enable/disable maintenance mode using the toggle switch.
- 2) User can calibrate the analog input channel by providing range of the sensor used.
- 3) Once in maintenance mode, user can control Digital Outputs.
- 4) The same will be reflected on Digital Output Status.
- 5) The Digital Input status indicates input provided on digital input channels.